Seeing what we can’t: How vertebrates use ultraviolet vision

Seeing what we can’t: How vertebrates use ultraviolet vision

Fish, birds and some mammals use UV.

First, some basics: Vision depends on light, which comes in a spectrum of wavelengths, ranging from very long to very short.

Vertebrate eyes have two kinds of light receptors in the retina at the back of the eye: Rods, which are sensitive at low light levels, and cones, which are stimulated at higher light levels and function in color vision.

Humans, and a few other mammals, have three types of cones; each type is receptive to a different range of wavelengths with peak sensitivity in the middle of the range. One type of cone deals with long wavelengths toward the red end of — what we call — the visible spectrum; other cones are sensitive to medium-long wavelengths in the middle part of the spectrum. The third type of cone is sensitive to short wavelengths, in the blue-violet end of the spectrum. Still shorter wavelengths, outside of the normal human visible spectrum, we call ultraviolet. Humans and some other mammals have cones that are slightly sensitive to UV light, but the lenses filter it out.

[Wild Shots: Photos of Mother Nature in Alaska]

However, lots of birds, fish and reptiles have a fourth kind of cone that is UV-sensitive. Even a few mammals — e.g., some rodents and bats — can see UV light quite well. Furthermore, some mammals have lenses that don’t filter UV wavelengths, so they can use UV to some extent — examples include hedgehogs, dogs, cats and ferrets, among others. Day-hunting snakes have lenses that block UV wavelengths, but night-hunting snakes have lenses that transmit UV. For these animals, just a little extra light might enhance vision in some conditions.

I’d love to be able to present a survey of all the vertebrates, not only about who has UV vision, but also to find possible correlations of UV sensitivity with the ecology, behavior, and evolutionary history of the species. But such a systematic survey does not exist. Part of the problem lies in the complexity of what determines the sensitivity; several factors are involved. The animal must possess the visual receptor cells — typically cones. Those cones must also be functional; that is, they must not be turned off by genetic mutations. The UV wavelength must actually reach the retina, not be filtered out by lens, cornea or other structures.

Apparently, only seldom have enough of those features been measured in enough animals allow a wide search for correlations with ecology, behavior and evolutionary history.

There is still a further question: If an animal can see UV, how is it useful to the animal? This is often difficult to determine, and suggestions outnumber the answers.

Here are a few bits and pieces:

UV sensitivity may be useful in foraging: Several studies have suggested that birds of prey that hunt small mammals may key in on trails left by the mammals as they scent-mark with reflective urine, although another study showed that vole urine is not very reflective in the UV range. It is possible that UV-sensitivity helps locate ripe fruits or insect prey because the UV reflectance of fruit and some insects differs from that of background leaves. But how often this works in the natural world is uncertain. Hummingbirds can see in the UV range. Many flowers either reflect or absorb UV, and hummers may use that ability to discriminate among flowers that they might visit and pollinate.

Among bats, a mutation causing loss of functional short-wave light sensitivity is found in nocturnal species that commonly roost in caves and echo-locate, using sonar to navigate and capture prey. Researchers suggest that perhaps using sonar pre-empts brain space otherwise used for UV perception. However, the correlation is not so clear, because the loss also occurs in fruit bats, which roost in trees and do not echolocate.

[Welcome to Howard Pass]

Decent data are more available for the use of UV reflectance and sensitivity in social situations in birds, fish and reptiles with good color vision. For example, male mountain bluebirds have more UV-reflective plumage than females, and males that reflect more UV are more successful in mating and siring offspring. Similarly, female sticklebacks and guppies perceive UV and prefer to associate with males that have good UV reflectance. Another study showed that lizards living in light, UV-rich habitats have social displays that convey signals in the UV range, while those in dark habitats do not.

I’ve left mention of amphibians to the end, because that story gets more complicated. It seems that many amphibians can see color in the dark. They have two kinds of rods that are sensitive at low-light levels in addition to cones; some of those rods are UV sensitive. Could that be true of some other vertebrates too?

This leaves UV vision in insects and spiders and other invertebrates for another story (maybe).

• Mary F. Willson is a retired professor of ecology. “On The Trails” is a weekly column that appears every Wednesday.

Seeing what we can’t: How vertebrates use ultraviolet vision

More in News

(Juneau Empire file photo)
Aurora forecast through the week of Nov. 17

These forecasts are courtesy of the University of Alaska Fairbanks’ Geophysical Institute… Continue reading

Juneau Police Department cars are parked outside the downtown branch station on Thursday. (Mark Sabbatini / Juneau Empire)
JPD’s daily incident reports getting thinner and vaguer. Why and does it matter?

Average of 5.12 daily incidents in October down from 10.74 a decade ago; details also far fewer.

(Michael Penn / Juneau Empire file photo)
Police calls for Monday, Nov. 18, 2024

This report contains public information from law enforcement and public safety agencies.

The Douglas Island Breeze In on Wednesday. (Mark Sabbatini / Juneau Empire)
New owner seeks to transfer Douglas Island Breeze In’s retail alcohol license to Foodland IGA

Transfer would allow company to take over space next to supermarket occupied by Kenny’s Liquor Market.

A butter clam. Butter clams are found from the Aleutian Islands to the California coast. They are known to retain algal toxins longer than other species of shellfish. (Photo provided by the Washington Department of Fish and Wildlife)
Among butter clams, which pose toxin dangers to Alaska harvesters, size matters, study indicates

Higher concentrations found in bigger specimens, UAS researchers find of clams on beaches near Juneau.

An aerial view of people standing near destroyed and damaged buildings in the aftermath of Hurricane Helene flooding on Oct. 8, 2024 in Bat Cave, North Carolina. (Mario Tama/Getty Images)
Members of U.S. Senate back disaster aid request amid increasing storm severity

WASHINGTON — The Biden administration’s request for nearly $100 billion in natural… Continue reading

Media members and other observers gather at the Alaska Division of Elections office on Wednesday evening as the results of all ballots, including ranked choice tabulations, were announced. (Mark Sabbatini / Juneau Empire)
Ranked choice voting repeal fails by 0.2%, Begich defeats Peltola 51.3%-48.7% on final day of counting

Tally released Wednesday night remains unofficial until Nov. 30 certification.

Looking through the dining room and reception area to the front door. The table will be covered with holiday treats during the afternoon open house. The Stickley slide table, when several extensions are added, provides comfortable seating for 22 dinner guests. (Laurie Craig / Juneau Empire)
The Governor’s House: Welcoming Alaskans for more than 100 years

Mansion has seen many updates to please occupants, but piano bought with first funds still playable.

The language of Ballot Measure 2 appears on Alaska’s 2024 absentee ballots. The measure would repeal the states open primary and ranked choice voting system. (Andrew Kitchenman/Alaska Beacon)
Count tightens to 45-vote margin for repealing Alaska’s ranked choice system going into final day

State Division of Elections scheduled to conduct final tally at 5 p.m. Wednesday.

Most Read